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PART ONE

THEORY AND EXAMPLES

I. INTRODUCTION

Formulas for the computation of plane wave transmission through

a rectangular aperture in a perfectly conducting plane are derived in

Part One. The computer programs which use these formulas are given in

Part Two. The general theory of solution is derived in a previous re-

port [Ii. Basicallv, the procedure is an application of the method of

moments to an integral equation formulation of the problem. The unknown

to he determined is the equivalent magnetic current over the aperture

re(gion, which is proportional to the tangential electric field in the

apertore. The solution is expressed in terms of an aperture admittance

matrix, which is dual to the impedance matrix for the complementary con-

ducting plate. Once the equivalent magnetic current is obtained, the

electromagnntic field can be computed via potential integrals. The nota-

tion used in °:his report is the same as that used in (1]. We abstract

equations from this previous work as we need them, referring to them by

equation number. We do not attempt to summarize the theory here.

-ious studies of aperture problems include those for small aper-

tures 12,,j, ;i, t-h'se for circular apertures [4,51. Some results for

(11 R. F. Harrington and I. R. Mautz, "A Generalized Network Formulation
for Aperture Problems," Scientific Report No. 8 on Contract F19628-73-C-
0047 with A.F. Cambridge Research Laboratories, Report AFCRL-TR-75-0589,
November 1975.

[21 H. A. Bethe, "Theory (,f Diffraction by Smal' Holes," Phys. Rev.,
vol. 66, pp. 163-182, October 1944.

[3) C. J. Bouwkamp, "Diffraction Theory," Repts. Progr. in Phys.,
vol. 17, pp. 35-100, 1954.

[4] C. Bekefl, "Diffraction of Electromagnetic Waves by an Aperture in
a Large Screen," Journ. Appl. Phys., vol. 24, No. 9, pp. 1123-113C.
September 1953.

151 C. J. Bouwkamp, "Theoretical and Numerical Treatment of Diffraction

Through a Circular Aperture," IFEE Trans. on Antennas and Propagation,
vol. AP-18, No. 2, pp. 152-176, March 1970.
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apertures of arbitrary shape have been obtained using Babinet's

principle plus a wire grid approximation to the complementary con-

ducting plate f6,7]. The reader may consult these papers for other

references.

IT. STATEMENT OF THE PROBLEM

Figure I shows the problem to be considered and defines the coordi-

nates and parameters to be used. The infinitely conducting plate covers

the entire z=O plane except for the aperture, which is rectangular in

shape with side lengths Lx Ax and L Ay in the x and y directions, respec-

tively. The excitation of the aperture is a uniform plane wave incident

from the region z < 0. The field to be computed is the far zone magnetic

field in the region z > 0, at the angles 6,€.

The solution is expressed in terms of the equivalent magnetic current

M = x E, where z is the unit z-directed vector and E is the electric

field in the aperture. To compute M, we use a linear expansion in terms

of basis functions M and evaluate the coefficients by the method of

moments. This involves determining a generalized admittance matrix,

evaluated in Section III, and an excitation vector. To determine the

field produced by M, we need a measurement vector. The excitation and

measurement vectors for the present problem are of the same form, and are

evaluated in Section IV.

III. ADMITTANCE MATRIX

According to [1, Eq. (28)] and (I, Eq. (10)], the admittance matrix

(Y] is given by

Y = (ya + Yb -) - 4<W19 H(M4)- (1)

(61 A. T. Adams, C. B. Varnado, D. E. Warren, "Aperture Coupling by

Matrix Methods," 1973 IEEE FMC Symposium Record, New York City,

June 1973, pp. 226-240.

f7J J-L Lin, W. L. Curtis, M. C. Vincent, "On the Field Distribution
of an Aperture," IEEE Trans. in Antennas and Propagation, vol. AP-22,
No. 3, pp. 467-471, May 1974.

I
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where H(M ) is the magnetic field produced by M radiating in free

space. The magnetic field H(M ) can be expressed in terms of an elec-

tric vector potential F and magnetic scalar potential as (8]

~(M) = - JF, (2)

where
ft -kl r-r" !

F =-4- JJ Me ds (3)

apert.

-Ikir-r'l
1 e ds (4)
4rapert. 

]z '

V-M
-(5)

where r and r' are respectively the vectors to the field and source

points in the aperture, w is the angular frequency, c is the capaci-

tivity of free space, vi is the permeability of free space, and

k = w is the propagation constant in free space. Substituting

[1, Eq. (7)] and (2) into (1), we obtain

Yij 4 f +(F V+ j)ds . (6)

apert.

Because of the identity

0 = Iffv. (c% 4)ds = Df Id . ds + if ! Kids (7)
apert. apert. apert.

(6) becomes

~'~~4iw if )d+ s (8)
apert.

f8] C. H. Papas, Theory of Electromagnetic Wave Propagation, McGraw-
Hill Book Co., New York, 1965, p. 23.
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where " W (9)

i= -j()

We choose the set of testing functions W equal to the set of

expansion functions M . The rectangular aperture 0 < x < L Ax,

0 < y < LyAy where Lx and Ly are integers is divided into rectangular

subareas of length Ax in x and Ay in y. The set M of expansion func-
i-

tions is split into a set MX of x directed magnetic currents and a set
My of y directed magnetic currents defined by

x R Tx(x) PY(y) x (10)-p(-l( ) - P q q = 1,2,. ..L

xp = 1,2,..L

y ~+(-lI (qIA p qlA (11)q

q = 1,2,...L -
Y

where TX(x) and TY(y) are triangle functions defined by
P q

(p-1)Ax (p-l) X < x < paxx

TXx= (~)x-Xpax < x < (p+l)Ax (12)
P Ax_

0 x -pAxI>aAx

- g-)A (q-1l)Ay < y < qAy

Ty~y  ffi (q~lAy-y

= (gl)y -qAy < y < (q+l)Ay (13)

0 jy - qAyj >~

and pX(x) and PY(y) are pulse functions defined by
P q

i5



r (p-J)Ax I x < PAx
xP (x) = (14)
P 0 all other x

I (q-1)Av y I qAy

pY (Y) (15)
q 0 all other y

x oyx

The magnetic charge sheets, sav p and p associated with M
x and M

y

are obtained from (5) as

x

(P (x) - P ( x )) y ( y )

p+(q-1) (1 -x1) (1
x

- ()(y))Px(x)

op+ (q-l) x  -J-) (

Introduction of the two types of expansion functions X and My and

the two types of testing functions MX and M
y into (8) gives rise to

four Y submatrices defined by

Yuv = 4Jw ( (FV • MI + Pi)ds (18)

apert.

V v

where u is either x or y and v is either x or y. In (18), F v and t

--
are the electric vector and magnetic scalar potentials due to M.are1

The integrations over the "field" magnetic current and charge

Mu an uexlcti(1),4,-and o, explicit in (18) are approximated by sampling the integrands

at two points. Hence,

= .wvA 1 1 v
Ytv. 4,AxAy -+ - (F P q

11 - +=~ 2 (¢-) ,y ] 19
i J p ( t) q 2 " p+lq

o' 4 v (19)

4 6



y)T - Owultv [(,v + 1 ,V
ii2- )x ,y 2 --j x

p q p ql

T 1 (&v + ~!(4V) 1(20)
jA-y x yq iwAy i pql

where v is either x or y and

x =(p -. 5)tx (21)
p

y = (q -. 5)Ay (22)

To determine p and q in terms of i in (19) or (20), refer to (10)

or(1)

Substitution of (10), (11), (16), (17), (3) and (4) into

(19) and (20) yields

yxx jxy I (s-p, t-q) T (s-~p+l, t-q)

ij in 2 c

+ Isi +32 (s-p+l, t-q) + I I (s-p-l, tq, -p- T2 (s --1t-Q)
2 c 2 - 2 T

+ 22(I (s-p+i, t-q) - 21 (s-p, t-q) + T (s-p-i, t-q))1 (23)

k Ax

Yx = + (s-p, t-q) + I~ (s-p+l, t-q)
'i Trflk2 c

+ T (s-p, t-q-l) - I c(s-p+l, t-q-1)] (24)

=x 1 c(s-p, t-q) + IC (S-p, t-q+1)
7nk2

+ I c(s-p-i, t-q) -I c(s-p-i, t-q+l)] (25)

7
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yY -y JxAy 1 I (s-p1 t-q), t-q+1)
ij = 2q I(s-p t

* (t-q+3/ 2 ) I (s-p, t-q+) + - I(s-p, t-q-]) (t-g-3/2) I (s-p,t-q-1)

+ 2 2 (Tc(s-p, t-q+l) - 21 (s-p. t-q) + I (s-p, t-q-1))] (26)

k2Ay C C

where n = 376.730 ohms is the intrinsic impedance for empty space

and where

(t+1/2)Ay (s+1/2)Ax -Jk 2

I (s,t) = k dy f dxe (27)
c ff2 2

v=(t-1/2)Av x- (s-1/2)Ax x + y

(t+1/2)Ay (s+1/2)Ax -Jk 22

T(st) =-x dy ( xdx (28)x(St = 2-- 2

y=(t-1/2)Ay x-(s-1/2)Ax x + y

(t+1/2)Ay (s+1/2)Ax -Jk 2

I (s, t) =f ydy F dx e-j X-+ - (29)Y 22

y=(t-1/2)Ay x=(s-]/2)Ax Px 2  y

I (s,t) is even in both s and t, Ix(s,t) is odd in s and even in t,

and I (s,t) is even in s and odd in t. In (23) to (26), YiJ is the
y ij

interaction of the expansion function M with the testing function
u x -
M. For the testing function Mi,

(p = 1,2,.. .L -1x

i = p + (q-)(Lx-), q 1,2...L (30)

whereas for the testing function My

p = 1,2,...L (

pq = 1,2,.. .L -1
y
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For the expansion function Mx

xIs = 1,2,.. .L-1

j = s + (t-1)(Lx-1), (32)

t . y

whereas for the expansion function M,

as I 1,2 .... Lx

j = s + (t-l)L x , (33)

t 1,2,... L y-1

The four dimensional array Y X of (23) in which s, p, t, and q

vary separately can be constructed from the two dimensional array

obtained by varying the two integers (s-p) and (t-q) in (23). In (23),

2 - L < (s-p) < L -2X --- X

1I- L y< (t-q) < L y-1
y- -y

but because (23) is even in both (s-p) and (t-q),

(s-p) = 0,1,2 .... L -2

(t-q) = 0,1,2 .... L -1

y

is sufficient. In (24),

I - L < (s-p) < L -2

2 - L < (t-q) < L -1
y- -y

but because (24) is odd about (s-p) - -1/2 and odd about (t-q) = 1/2,

(s-p) = 0,1,2,...T, -2
X

(35)

(t-q) = 1,2,3,.. .L -1

is sufficient. Tn (25),

PL



2- 1, < (s-p) < 1, -1

1 - L < (t-q) < L -2

but because (25) is odd about (s-p) - 1/2 and odd about (t-q) = -1/2,

(s-p) = 1,2,3 .... 1. -1x (36)

(t-q) = 0,1,2 .... L -2Y

is sufficient. Finally, in (26),

1- L < (s-p) < L -1

2 - L < (t-q) < L -2y- y

but because (26) is even in both (s-p) and (t-q),

(s-p) = 0,1,2 .... L -i
(37)

(t-q) = 0,1,2 .... L -2Y

is sufficient. From inspection of (23) to (26) and (34) to (37),

s = - 1,0,1,.. .L -1x

(38)

t = - 1,0,1,.. .L -l
y

is adequate in (27) to (29).

The integrals (27) to (29) are evaluated by using the following

four term approximation
-jr -Jkr 22 k r-o31(9

e ze [ - Jk(r-r) -- (r-r)2 + 2 (r-r )3 (39)
o 2 0 6 0

where

10
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22
r x + y (40)

ro= (sAx) 2 + (tAy) 2  (41)

Substitution of (39) into (27) yields

2r2 3 3
kr jkr_ it

I(s,t) = [k(l + jkr k o r °)JJ r

2 2

jk r 0 1 Jkr
+ k2(-j + kr + - )j dxdy + k3 ( -2  -) rdxdy

-Jkr

+ 6i r2dxdylei o (42)

where the limits on all the integrals in (42) are the same as those

in (27). The approximations to (28) or (29) are given by (42) with

an additional factor of either 2-x or -y- in the integrands. Three of
Ax iAy

the required integrals are

Jff dxdy = AxAy (43)

ff xdxdy = sAx 2 Ay (44)

ff ydxdy = tAxAy 2  (45)

The indefinite integrals associated with the rest of the required

integrals are

ff dx = x log(y + r)+ y log (x + r) (46)

I'3 3
rdxdy = 3 +  -- log(y + r) + Y- log (x + r) (47)3 6 6(



."

r 2dxdy = 2 3L (48)

3W

-_xd yr + 2 log (y + r) (49)
r 2 2

r2 2 4
xrdxdy = r(82 8 + -?-log (y + r) (50)

2 2xr 2dxdy = x 2 Y( + Y- (51)

ydxdy - xr +2 
(2

+ Lr log (x + r) (52)ff r 2 2

r2 2 4
yrdxdy = xr(!2 + Y._)+.__ log (x + r) (53)y y 12 8 8

yr 2 dxdy = y2 x (L - + (54)

The reader can verify (46) to (54) by showing that, in each case, the
a2

mixed second partial derivative of the right hand side is equal

to the integrand on the left hand side. The definite integral is ob-

tained from the indefinite integral by adding the indefinite integral

evaluated at both upper limits to that at both lower limits and sub-

tracting both evaluations of the indefinite integral at the mixed (one

upper, one lower) limits.

IV. PLANE WAVE EXCITATION AND MEASUREMENT VECTORS

The plane wave excitation vector Pi of fl, Eq. (32)] and the

plane wave measurement vector fm of [1, Eq. (37)] are of the same form

except for a minus sign. We therefore need to evaluate only one of

them, say the measurement vector Pm. We specialize it to four princi-

pal plane patterns as

12



(P) 6 =- 2 fj MU•-e jkX cos dxdy (55)

*ert.

(Pm) --- 2 e cois dxdy (56)

apert.

(P x -2 ff u iejky Co" dxdy (57)

apert.

(Pmu 2 ff -4u jeky c°SO dxdy (58)Pi xx - 2 -4

apert.

The superscript u is necessary because M has been split up into

and of (10) and (11). In (55) to (58), and x are unit

vectors in the 0, y, *, and x directions respectively where, as shown
in Fig. 1, 0 is measured from the positive x axis in the y - 0 plane

and is measured from the positive y axis in the x - 0 plane. For

measurement vectors, 00 < 8 < 1800, 0' < < ..80. (P u)8y is for a

polarized measurement in the y = 0 plane, (Pi)yy is for a j polarized

in the x = 0 plane, and (P i)xx is for a i polarized measurement in the

x = 0 plane. Because our set of testing functions W is the same as the

set of expansion functions M, the plane wave excitation vector P of

[1, Eq. (32)] is obtained by putting 1800 < 8 < 3600, 1800 < < 3600 in

the negative of one of the equations (55) to (58).

Substituting (10) and (11) into (55) to (58) we obtain, with the

help of (9]

(91 H. B. Dwight, Tables of Integrals and Other Mathematical Data,
fourth edition, Macmillan Co., New York, 1961, Eq. 567.1.

4 13



(Pmx = 2 eJkptx cos2 si"O ( c1Pp+(q-1)(, X- 1))gy 2Ax~y osn a

2 Y

(59)

(Yey= 0, 1 = 1,2,.... L (Ly-1) (60)
myy

(P )6= 0, 1 =1,2,... L (1 ) (61)
ik~ xco

i yy x y

sinkAx 2cos eJk(p-i/2)Ax s = 1,2 .... x
(Pm+ l )Y= -2AxAy -) e

2 q 1,2,.. .L -1

(62)

(pmX) = 0, 1- 1,2 .... (L -I)L (63)
I ox x y

( = 2~x~y sin~ sin kAy c Cos 2 ep 1,2,. .. Lxp+(q-l) x Cx khy co

Lq - 1,2 ... L -1

(64)
inkAy cos * s,0 p__l2' .Lx-1

(P "( ) ( ) - -2AxAy ( k y os2 c ) eJk(q- /2)Ay co ....

p 'q-)( ''1)x kAy cos I2 lq=l,2,. L

y

(65)

(PmY)) - 0, 1 = 1,2 .... L (L -1) (66)
i x x y

V. REPRESENTATIVE COMPUTATIONS

A versatile computer program has been developed using the pre-

ceding formulas. This program is described and listed in Part Two

of this report. Some representative computations obtained with this

program are given in this section.

14



The first computations were made for a narrow slot, of width

A/20 and of variable length L. The far-zone quantity plotted was the

transmission cross section, defined as [I, Eq. (39)]

= 2nr 2
1H1

2  (67)

where H is the component of magnetic field being considered. We
m

use the notation:

I:: =:::T Ili in the y = 0 plane, (8
!, T~y(68)

TXX = 2'r2Inx 12  in the x = 0 plane.

For the case being considered, the orthogonal components of H1 in

these two planes were zero. Figure 2 shows plots of T y and Txx for

x-directed slots of width X/20 and length (a) L = X/4, (b) L = X/2,

(c) L = 3X/4, and (d) L = X. In all cases the excitation was due to

a plane wave normally incident on the conducting plane with the mag-

netic field in the x direction. Note the large transmission cross

se'lion for L = X/2, case (b), due to the slot being near resonance.

The plots of T are of the same form as scattering cross section from

the complementary conducting strips, as known from Babinet's principle.

Figure 3 shows plots of the equivalent magnetic current in the

aperture region for the same slots. Since M = 2 x E, they are also

plots of the tangential component of E in the slots. Again note the

large value of M for the case L = X/2, which is near resonance. Note

also that, for short slots (L < 3X/4), the M is almost equiphasal and

closely approximated by a half sine wave.

Next, computations were made to test the rate of convergence of

the solution as the number of subsections was increased. A slot of

width X/l0 and length 2X was chosen for the study. Again the excitation

is a plane-wave normally incident on the conducting plane with the mag-

netic field in the x direction. Figure 4 shows plots of Ty and Txx

for the cases (a) 39, (b) 19, (c) 9, and (d) 4 triangular expansion

15



0 .001 .002 .003 .004 0 . .2 .3 .4

A2 TX

Fig. 2. Transmission cross section for slots of length L in the x
direction and width X~/20 in the y direction. (a) L = X4
(b) L - X/2, (c) L - 3X~/4, (d) L - X. Excitation is
by a plane wave normally incident on the conducting plane
with magnetic field in the x direction.

4 16



8 180 8 ADD 4 1800

La 6 . A ! " 900 w6- 900

w ,
(n 0

4- 004 -4

2- -90* z 2 -900

0 )-I80 0  J - 180*
0 L 0 L

(a) (b)

8 8- 100 8- -1800

W 6-- 90 w 6- -900

0 w

it 00 O00

z z

_90o 2 2 90o

______0____t 
7__ .- I80*

0 L 0 L

(c) (d)

Fig. 3. Magnitude and phase of IM/ r.1 , where 4 is the x-directed

magnetic current and F
1 is the incident electric field,

for the same slots as for Fig. 2. (a) L = X/4, (h) I. = X/2,

(c) I, = 3)/4, (d) , = X. Circles denote magnitude, tri-

angles denote phase.
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To,/ X2

0 1.0 0 1.0

(a) (b)

T.. X2

TrXX

TqY/X

o.0 0 1.0

(c) (d)

Fig. 4. Transmission cross section when the number 
of expansion furc-

tions is (a) 39, (b) 19, (c) 9, and (d) 4. Computations are

for a slot of length 2X in the x direction and width X/10 in

the y direction. Excitation is by a plane wave normally

incident on the conducting plane 
with magnetic field in the

x direction.



~ I4
0.2

0 0.4 0.8 X,.2 1.6 2.0 0 . . 12IA2

(a) 
b

6 U
00

4 W4

0942

0 04 0.8 xX1.2 1.6 2.0 0 0.4 0.8 XA1.2 1.6 2.0

(C) 
(d)

rip. 5. Magnitude and phase of I M/F J, where M is the x-.directed

magnetic current and E. is the 
incident electric field,

when the number of expansion functions 
is (a) 39, (b') IQ,

(c ,and (d) 4. Circles denote magnitude* triangles

denote phase. Computations are for the same slot as

for Fig. 4.
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T 3 / rX

0 .1 .2 00 .05 1 V 01

0C.25 .5 .75 1.0 0 .1 .2 .3 .4

(C) (d)

Fig. 6. Transmission cross sections for a square aperture of side

length L, excited by a plane wave with H in the xz plane
and incident at an angle 0 from the normal direction in
the II plane. (a) L = X~/4, 0 =0. (b) L = X/4, =450.

(c) L = /,0=0. (d) L X /2, e =450*

20



functions respectively. Note that tile patterns (a) and (b) are essen-

tially the same, and pattern (c) is only slightly different. Thnev dif-

fer appreciably from (d), which results from only 4 expansion functions.

The difference in the solutions as the number of expansion functions is

decreased is better illustrated by plots of M, as shown in Fig. 5. Tlese

are for the same cases as the corresponding cases of Fig. 4. It can be

seen clearly how thc ,computed equivalent current in the slot region changes

as the number of subsect!ons is reduced. As a rule of thumb, for Iear-

field quantities (such as M) one should use subareas of length >/10 or less

and for far-field quantities (such as T) length )/5 or less.

Finally, Fig. 6 shows some computations for wider apertures and

excitations by waves not normally incident on the conducting plane. All

cases shown are for square apertures, of side length L. Figures 6(a) and

(b) are for 1, = >/4, with the plane wave normally incident for (a) and

incident 450 from the normal direction in the N plane for (b). Figures

6(c) and (d) are for I. = >/2, with the plane wave normally incident for

(c) and 45' from the normal direction in the H plane for (d). Note that,

for the relatively small slots chosen, there is little difference in the

shapes of the patterns as the incident wave direction is changed from the

normal direction. There is, however, an appreciable difference in the

amplitudes of the patterns.

VI. DISCITSSTON

The computer program, Part Two, is written explicitly for

rectangular apertures, but the formulas are valid for any aperture

composed of rectangular subsections. Other apertures, such as L-shaped,

T-shaped, square 0-shaped, etc., could he treated by appropriately

changing the computer program. Apertures of arbitrary shape could be

treated by approximating them by rectangular subsections. As with all

moment solutions, the size of the apertures which can be treated depends

upon the size of the matrix which can be computed and inverted. The ex-

amples Indicate that the rectangular subsections should have side lengths

not greater than 0.2 wavelengths for reasonable accuracy.
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The aperture admittance matrix has application to any problem

in which one region is bounded by a plane conductor, as shown in

reference []]. Pence, It can be used for waveguide-fed apertures in a

ground plane, and for cavity-backed apertures In a ground plane. It is

planned to treat these latter two problems in future reports.
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PART TWO

COMPUTER PROGRAMS ,I
I. DESCRIPTION OF THlE MAIN PROGRAM

The main program compu.es the complex coefficients V which
n

determine the magnetic current M according to [1, Eq. (5)], the trans-

mission coefficient T of [1, Eq. (44)], and four patterns of the trans-

2mission cross section [1, Eq. (40)] per square wavelength T/ . The

four patterns of 7/X2 are written on the first record of direct access

data set 6. The main program calls the subroutines LINEO, YMAT, and

PLANE which are listed later on in this report.

One data card is read early in the main program according to

READ (1,11) LX, LY, LI, NTH, DX, DY, TH

Ii FORMAT (413, 3E14.7)

The 1, and 1. appearing in (10) are read in through LX and LY respec-x y

tivelv. Here, LX > 2 and LY > 1 which means that the long dimension of

a rectangular aperture only one subsection wide must lie along the x

axis. DX is Ax/ and DY is Ay/X where Ax and Ay appear in (12) and (13)

and is the wavelength. The plane wave excitation vector [1, Eq. (32)]

is the negative of expression (54 + LI) where LI is either 1,2,3 or 4 and

where the angle (either 0 or ) in degrees appearing in equation (54 + LI)

is TH. The four patterns of the transmission cross section [I, Eq. (40)]
2per square wavelength T/
2 are generated by evaluating the plane wave

measurement vectors (55) to (58) at angles (0 or i) equal to (J-1)*l80./

(NTH-i) degrees, .1 = 1,2,.. .NTH.

Minimum allocations are given by

COMPLEX Y(N*N), P(4*N), V(N)

DIMENSION TA(4*NTl)

where

N = (L-l)*LY + LX*(LY-l) (69)
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Statement 27 uses LX, LY, DX, and DY to store [ya + Y

where [Ya + Y bI is the admittance matrix appearing in [I, Eq. (14)]

bv columns in Y. Here, n = f = 376.730 ohms is the intrinsic impedance

for empty space. At the time statement 27 is executed, LX and LY are

still the original input data, namely the numbers of subdivisions in x

and y but DX and DY are kAx and kAy instead of the original input data

'x/ and Ay/X.

Statement 28 inverts the N by N matrix stored in Y.

-1 pi
Statement 2Q uses TH, LX, LY, DX, and DY to store in

S2AXAy m
P(r + (Y-])*N), K = 1,2,3,4, m = 1,2,...N, where P is the plane wave

m
excitation [1, Eq. (32)] and, in particular, the negative of expression

(54 + W). At the time statement 29 is executed, TH is the angle E or

(see (59) to (58) and Fig. 1) in radians which specifies the direction

from which the exciting plane wave comes, LX and ,Y are the numbers of

subdivisions in x and y, DX is kAx and DY is kAy.

Nested Dn loops 16 and 17 multiply the matrix stored in Y by the

column vector stored in P(1 + (LI-I)*N) through P(LI*N) and use the con-

stant UV - j2-ri in order to store V of [1, Eq. (14)] in V. Substituting

[I, Eq. (28)] into [1, Eq. (13)] we obtain

[YhSIV =1 i (70)
2

which simplifies [1, Eq. (44)] to

T = 2S Re(V I) (71)

inc.

DO loop 16 accumulates 2- in U2. Statement 31 stores the trans-
2AxAy

mission coefficient T of (69) in T.

[1, Eq. (40)] simplifies to

k4
- 2/k,2  

nV ,2  (72)

32T3n 2
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DO loop 19 stores the transmission cross section per square wavelength

T/A
2 of (72) in TAU(K). Statement 30 uses TH = (J-I)*7/(NTH-I) radians,

1 m 1 -m
LX, LY, DX, and DY to store AA Pn in P(n + (K-l)*N). For the P

stored in P(I+(K-I)*N) through P(K*N), DO loop 21 accumulates V in Ul.
2Axl~y

Next, /A 
2 of (72) is stored in both TAU(K) and TA(J+(K-1)*NTH).

Statement 32 writes TA on the first record of data set 6 for possible

input to the plot program listed later on in this report.
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C LISTING OF THE MAIN PROGRAM AND SAMPLE DATA

// FXEC WATFIV
//IG0.TO6FDOI DO DSNAMF =EE0034.REV1 ,DISP=OLO,I)N[T 3330, X

If DCR=(RFCfFM=VS,RLKSIZF=2596,LPFCL=2592)
IIGrDSYS IN DO *

SJOR M AUTZ9T I ME= 1 ,PAGES=40

C MAIN PROGRAM
C TH IS PROGRAM CALLS THE SURPOUT I NS L INEO,YMA T, PLANE

COMPLEX Utt)VPY(2500) PP(200) ,II,U2,V(50) ,CONJG
DIMENSION TAUj(4),TA( 11681
P1=3. 141593
ETA=376. 730
i= (0.9 1.)

UV=2.*PI *ETA*U

WRITF43,12) LX,LY,LI ,NTHDX,fly,TH
12 FORMAT(# LX LY[LI kTHI,5X,IDXotl2X#VDY',12Xt4TH/lX,413,3E14.7J

8I( 2.* P1
OX =DX*BK
OY=DY*RI(
P8=180./PT
TH=TH/P8

27 CALL YMAT(LX,LVPXDY,Y)
UP ITE 13, 13) (Y( 1), 1=1,3)

13 FO'RMAT(* Yo/(1X,6E11.4))
N= (LX-1) *L Y*L X- (1Y-1)

28 CALL LINEQ(N,Y)
WRITE(3,13) (YII, 1=1,3)

29 CALL PLANE(TH,LX,LYPDX,DY,P)
WR ITE (3, 14)( P( I, 1=1,3)

14 FORMAT(@ P'/IX,6Ell.4)
IA=1+(LI-l)*N
18=1 A+N- I
U2 =0.
DO 16 J=1,N
Ul =0.
J1=J
DO 17 I=IA,IP
UI=U14-Y(JI) *P( I)
JlI=Jl+Nr

17 CONTINUE
VI J )=U1*UV
JI =1A+J-l
U2=U2tV(J.I*CCNJG(PIJ 1))

16 CONTINUE
WRITE(3,24) (VI I), 1=1N)

24 FORMAT(' COEFFICIENTS V OF MAGNETIC CURRENT EXPANSION FUNCTIUNS'
I/I IX,6E11.4))

31 T=PEAL 1U2)/(LX*LY*ETA*SIN(TH))
WRITE(3,18) T

L8 FORMAT(' TRANSMISSION COEFFICIENT T=l E14.7)
CT=DX*DY/( PI*ETA)
CT=CT*CT/18.*PI)
DTH=PJ/(NTH-I )
wRITE (3,23)

23 FORMATI'O ANGLE',4X, TAUI' ,7X,ITAU2*,7X,'TAU3',7X,'TAU4' )
4 DO 19 J1,tNTH
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TH= (J-1) *0TH
30 CALL PLANE(TI-'LXLY,DXDY*PD

TH= TH* P8
JL =0
J2=J
DO 20 K=194
u1=0.
DO 21 1=1,N
JI=J 1*1
U1=U14.P(Jfl*V(I)

21 CONTINUE
H=Ul*CCNJG( UI
TAU(K)=CT*H
TAI J 2 I=TAU ( K)
J2=J2+NTH

20 CONTINUE
WRITE(3,22) TH,(TAU(I , 1=1,4)

22 FORMAT(IXtF7.2,4El1.41
19 CONTINUE

KA=J2-NTH
REWIND 6

32 WRITE (6) (TA (J) ,J I ,KA)

FND
$DAT A

5 1 1 19 0.50003OE-31 0.5030030CF-01 0.27O00003F+03

PRINTED OUTPUT
LX LV L I MTH 11x DY TH

5 1 1 19 0. 5 000()01F -01 0. 500 000E-0 1 0. 2700000 E +03
y
-0. 1531E+02-O.6525F-0)l ).66b4bF+01-0.6463E-01 0.1312E+01-O).6275E-01
y
-O.9999F-01 0.4015F-32-J.68?2E-,31 J.5537F-O2-0.513 LE-Ol 0.5523E-0/,
P

-0.1000F+fll-0.3034F-06-0.IOOOE+01-0.6067F-06-0.IOOOF+01-O.911E-3b
rnFFFICIENTS V OF mAGNETIC CURRENT EXPANSION FUNCTIONS
0.4511F+02 0.5916E+03 0.6238E+02 0.8153E+03 0.6238E+02 3.8153E+03
0.4511E+32 0.5916F+03

TPANSMISSION COEFFICIENT T= 0.1141254.E+00

ANGLE TAU1 TAU2 T AIJ 3 TAU4
00 0.0000E4-00 0.OOOOE*00 0.oO00F+00 0.2186F-02

10.n0 0.5885F-04 0.O000F*00 O.0000F+00 0.2186F-02
20.00 0.2308F-03 C.OOOOE*00 O.0OO00 0.218E-02
30.00 0.5016E-03 0.OOOE+00 0.0000E4-30 0.2t90F-02
40.00 0.8462F-03 3.OOC .3000E+30O+) 0.2193E-02
950.00 0.1228F-02 0.0C00E*+00 0.0000r:+00 0.2196F-02
60.90 0.1602F-02 0.ODOOE+00 0.0000E*00 0.21199E-02
70.00 0.1918E-02 0.O000E*00 0.OO00F+00 0.2202F-02
80.00 0.2129E-02 0.OOOOE+00 0.OOOE00 0.2203F-02
90.00 0.2204E-02 C.0000F+00 3.0000F+00 0.?204E-J2
100.00 0.2129E-02 0.OOOOE.00 0.OOOOF+00 0.2203F-02
110.00 0.191BE-02 0.OOOOE+00 0.0000E+00 0.2202E-02
120.00 0.1602E-02 0.3000F+00O0.OOOOF+00 0.2199F-02
130.00 0.1228F-02 0.OOOOE+00 0.OOOOE+00 0.2196E-02

14000 .842E-3 1300E+00 0.OOOOE+00 0.2193F-02

140. 0 0 8462 -03 C.C27



pr

150.00 0.5016E-03 0.OOOOE+00O .OOOOF+0O 0.2190E-02
160.00. 0.2308E-03 0.OOOOEtOO O.0000E400 0.2188F-02
170.00 0.5885E-04 O.00OO0 0.000O0E0 0.2186E-02
180.00 0.7663E-15 0.OOOOE+O0 O.0000F+00 0.2186F-02

C LISTING OF THE SUBROUTINE LINFO

SUBROUTINE LINFQ(LLC3
COMPLEX C(2500),STORtSTO,ST,S
DIMENSION LR(50)
00 20 11I,LL
LPf 13=1

23 CNTINUE

DO 18 M=1,LL
K=M
K2=MI+K
Sl=t1PS(PEALCC(K2J)4-+ABS(AIMAG(C(K2)))
DO 2 I=M,LL
KL=Ml+l
S?=ABS(REAL(C(KlIH)+ABS(AIMAG(C(Kl333
IF(S?-Sfl 2,2,6

6 K=I
SI =S2

2 CDNTINUE
L S=LRP(m)
LP(M3=I P(K)
L IK)=LS
K2=M1+K
STOjP=C (K2)
~J1=0
DO 7 J=L,LL

K2=J 1+M

STO=C (K 1)
Cf Kl13=C (K2)
Cf K?)=STO/STCR

7 C)NT INUE
KI =MI+M
Cf K 1) = I/ST OR
DO it I=1,LL
1Ff I-M) 12,11,12

12 KI=M14-I
ST =C(K 1)
C (K 13=0.

Dfl 10 J=1,LL

K?=Jl +M
C(Kl3=C(Kl)-C(K2)I*ST
Jl=JI+LL
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10 CONTINUE
11 CONTINUE

Ml =MI+LL
18 CONTINUE

JI =0
DO 9 J=1,LL
I (J-LR(JAI1 1498, 14

14 IPJ=IP(J)

21 DO 13 1=1,tL
K2=J?* I
K(1=Jl+I
S=C (K2)
CC K2 I=C( KI)
C ( K 11=

i 3 CONTINUF
LR ( J) =LR(LPJ)
LR (LPJ I=IRJ
IF(J-LR(JI I 14,8,*14

8 JI=J1+LL
9CONTINUE
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II. DESCRIPTION OF THE SUBROUTINE YAT

The subroutine YMAT(LX, LY, DX, DY, Y) uses the input variables

LX, 1Y, DX, and DY to calculate and to store 7 by columns in Y where

[Y] is the idmittance matrix (1) dealt with in Part One. With regard

to the input variables, LX and LY are the numbers L and 1. v (see (10)) of

subdivisions in x and y, DX is kAx and DY is kAy where Ax and Ay (see (12)

and (13)) are the lengths of the subdivisions in x and y. We require that

IX _ 2, and LY > 1.

Minimum allocations are given by

COMPLEX TC(.l), TX(Jl), TY(J), YXX(J2), Y(N*N)

iI = (I 1Y ) * (IY + I)

J2 = MX ((IX-I) * LY. LX * (LY-1))

N = (WX -1) * LXY + LX * (LY-1)

Here. MAX denotes the maximum value.

Nested DO loops 15 and 16 put I (s,t) of (42) in TC(JST), Ix (s,t)

in 7X(,ST), and ry (s,t) in TY(JST) where

s = IS - 1

t JT - I

JST =s + 2 + (t+l)(L + 1)
x

As mentioned in Part One, the expressions for I (s,t) and I (s,t) arex y

similar to (42). The variables x and y of integration in (43) to (54)

are changed to kx and ky with the result that x and y is replaced by kx

and ky everywhere on the right hand sides of (43) to (54) and the dangling

factors of k, k
2 , k3 , and k

4 in (42) disappear. The logic inside DO loop 16

is best understood by building up a table of variables in YMAT versus expres-

sions in 'Prma of variables appearing in Part One, Section III.
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Variables In YMAT Expressions in Part One, Section III

YL (t - .5)kAy

YIT (t + .5)kAy

XL (s - .5)kx

XU (s + .5)kAx

R1 kr
o 22 33

o 2

k 2 r2

U2 -j + kr + j 0

kr
113 - - - - 2

-jkr

EX e

S1 kx log (y + r) + ky log(x+r) evaluated at x,y limits

S3 k 3x 3 log(y+r) + k3y 3 log(x+r) evaluated at x,y limits

5 log(v+r) + 6~x3 log(x+r) evaluated at3 +6g- ogvr 6

x,y limits

TC (JST) I (s,t)C4 3 2 4.4. xyr + X_
5 k (12 r log(y+r)) evaluated at x,y limits

2 2
5 2 2 2

S6 r x y( + X-) evaluated at x,y limits
4 6

TX(JST) I (s,t)

3 2 4.4 xr x5 k x + I + Y log(x+r)) evaluated at x,y limits
152(W 8 8

2 2
S6 k5 y2 x (4. + - ) evaluated at x,y limits

TYC(TST) I (s,t)
Y
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In the preceding table, the first, second, and third S5 and the first F
and second 56 correspond respectively to the first, second, and third

uses of S5 and the first and second uses of S6 in DO loop 16.

If I = 1, the logic between the statements 44 and 18 uses the
Y

fact that (27) is even in s to store T (-1,0) in TC(L +2). Similarly,c x
I (-1,0) is stored in TX(L x+2) and I (-1,0) in TY(L +2). If L # 1, thexx y xy

logic between statements 44 and 18 stores I (s,-l) in TC(s+2),
c

s = - -,0,] .... -1 and I (-I,t) in TC(l + (t+l)(. + 1)), t = 0,1,...L -1x c x y
and similarly for I and I .S x y

Nested DO loops 19 and 20 store xy Y where Y is given by (23)

with

(s -p) = IS -2

(t - q) = JT - 2

in YXX(s-p+ +(t-q)(L -i)). See (34) for bounds on (s-p) and (t-a).x

Nested DO loops 24, 23, 22, and 21 store "x- Y' where i and j
jAxAy ij

are given by (30) and (32) where

p = JP

q = JQ

s = JS

t = JT

in Y(i + (I)*N) where N is given by (69). If

S -p >

t -q >0

the subscript for YXX inside nested DO loops 24, 23, 22, and 21 is

s - p + 1 + (t-q)(1, - 1)x

The more general subscript

Is - P1 + 1 + It-qj(L - 1)

is a consequence of the fact that Y of (23) is even in both (s-p) and

(t-q).

32



Nested DO loops 25 and 26 store 7TxDy YYX where YiJ is given by
jAxAy ij ij

(24) with

s - p = JS - 2

t - q = JT - 2

in YXX(s-p + 1 + (t-q-l)(L 1)). See (35) for bounds on (s-p) and (t-q).
x

Nested DO loops 30, 29, 28, and 27 store r-n Yix where i and j are

given by (31) and (32) where

r
p = Jp

q = JQ

S = JS

t = JT

in Y((L - 1) L + i + (J-1)*N). If
y

s-p > 0

t-q > 1

the subscript for YXX inside nested DO loops 30, 29, 28, and 27 is

s - p + I + (t-q-1)(L x - 1)

The more general subscript

- p + -1 + L + (It - q - - -L 1)

for YXX is a consequence of the fact that yX of (24) is odd about
1 1

s-p = - 1 and odd about t-q = 2.

Nested DO loops 31 and 32 store Ixy Y where Y is given by
j~xAy ij ij

(25) with

s - p = JS - 2

t - q - JT -2

in YXX (s-p + (t-q)(L - 1)). See (36) for bounds on (s-p) and (t-q).x

Nested DO loops 36, 35, 34, and 33 store 7 D Y  where i and j
JAxAy Ij

are given by (30) and (33) where
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p = JP

q = JO

s = IS

t = ,T

in Y(N*(L - 1) * 1 + i + (_J-)*N). Ifx y

s -p > I

t -q > 0

the subscript for YXX in nested DO loops 36, 35, 34, and 33 is

s - p + (t-q) (L - 1).x

The more general subscript

p + .-+ (It (+ -

for YXX is a consequence of the fact that YXY of (25) is odd about
=1 1 *

s-p =  and odd about t-q = -

2'

Nested DO loops 37 and 38 store where is given by
jAxAy ij

(26) with

s - p = JS - 2

t - q = JT - 2

in YXX (s-p + I + (t-q) L ). See (37) for bounds on (s-p) and (t-q).

Nested DO loops 42, 41, 40, and 39 store 'T ?I YYY where i and
jAxAy ii

are given by (31) and (33) where

p = JP

q = JQ

s = JS

t = JT

in Y((N+I) * (L - 1) *. + i + (1-1) * N). If
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thesubcrit fr YX i netedDO loops 42, 41, 40, and 39 i

s- p + I + (t-q)L

The more general subscript

5-pj + I + It - qIL

for YXX Is a consequence of the fact that Y7' of (26) is even in

both (s-p) and (t-q).
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C LISTING OF THE SUBROUTINE YMAT

SUBROUTINE YMAT(LXLY,DX,DY,Y)
COMPLEX U,UlU2,U3,U4,EX,TC(100),TX(100),TV( 100),YXX( 100),Y(2500)
DX2= 1.*/(DX*OX)
DY?= 1 ./( OY*OY I
DXL)Y=DX*D)Yr
NX= (LX-1 )*L Y
NY= ILY-1 )*LX
N=NX.NY

LXP=LX+l
LYP=LY+t
LXM=LX-1f
LYM=LY-1
U= (0.91.)
t)4=. 1666667*U
JS T =1X*1
DO 15 JT=1,LY
JST=JST+ I
YL=(JT-1.5) *CY
YO=YL +DY
YL?=YL*YL
V U 2 VU *YVU
V1=IJT-1 )*ny
V2=VI*Yl
Dn 16 JS=1,LX
XL= (JS-I .5) *D
X'U=XL+DX
XL 2=XL*XL
XU2= XU*X U
Xl=(JS-I )*DX
X2 =Xl *Xl
P2= x2+Y2
P1 =SQRT(P2)

U1=R1J1*Rl*(I.-.1666b67*R2)*U
U2=P 1-RU 1*UJ
U)3=-.*5-. 5*p *U
FX=CnS(Rl)-U*SIN(Rl)
J ST =J ST* +
P5=X12+YL2
R6= XU2+YL2
P 7=X12+YU2
R8= XU2+YU?
P 1=SQRT (P5)
P2=SQRT( R61
P3=SQPT{ P1')
R4=SQRT(RB)
AVL=YL*ALc3G((XU*P?)/(XLR 1))
AYU=YU*ALOG((XU+P43/(XL+R3l)
AXL=XL*ALOG((YUtP3)/IYLRl))
AXtU=XU*ALOG((YU+P4)/(YLtR?))
Sl=AXU-AXL-AYU-AYL
AYL=YL*AYL
AYU=YU*AVU
A XL =XL *AXL
AXU=XU*AXU
S3=XU*AXU-XL*AXL* VU*A~lJ-VL*AVL
X'Y IXL*VL
XY2= XU*YL



XY3=XL*YU
XY4= XU*YU
S'=.3333333*(XY4*P4-XY3*R3-XY?*R?.4XYI*Pli+.i666661*S3
TC'(JST3=(Si*U1,9rXDY*U2+S5*1j3+.3333333*(XY4*R8-XY3*R7-XY2*R6*XY1*R5
)*U4)*EX1

YR2=YL*P2
YR 3=YU*R 3
YR4=YU*R4
Sl,=.8333333E-1*(YR4*R8BVP3*R7YR2*R6+YP*P)+.1*(XU?2*(YR4-YR2J-X
17* ( YR3-YR1) +XtJ2*AXO-XL 2*AXL)
S6=.2c5*DY*(XU2*XU2-XL2*XL2l*.3333333*Xl*D)X*(YU2*YU-YL2*YL)
TX(JST)=.5*(YR4-YR3-YR2+YRI1h.XU-AXL)*UI+XI*OXDY*U2*SS*U3+.s6*J4
TX (JST l=TX( JST p*F X/oX
XP I =XL *R
XP 2= XU*R2
XR3=XL*R3
XP 4= XU*P4
S')=.8333333E-1*(XR4*R8-XR3*P7-XR2*P6+XR1*R5)+.125*IYU2*(XR4-Xk3)-Y

1 L2 * (XP2-XR 1 +YtI2* AYU-YL 2*AYL)
S6=.25*DX*(YU2*YU2-YL2*YL2)+.3333333*Yl*DY*(XU2*XU-X12*XL)
TY(JSTI=.5*(XR4-XR3-XR2*XPI+AY--AYL)*Ul+Yl*DXD*U2.S5*U3+S6*J4
TY( JST )=TY( JSTI*E X/DY

16 CONTINUE
15 CONTINUE

IF(LYM4) 44,44,45
44 JI=LXP+l

J2=jI +2
TC ( J ) =TC(IJ 2
TX (J 1=-TX IJ2 I
TY(Jl11TY(J2)
Gr TO 46

45 J1=?*LXP+l
00 17 JS=2,LXP

TC(IJS I =TC( J 1
T X f JS ) = T X I )
TV IJS 1=-TV IJI I

If CONTINUE

D(' 18 JT=I,LYP

Tf IJjII=TC( J2)
TX(jlII=-TX(J2)
TYC Ji =TY(J2)
JI =J[j *XP

18 C lN TI NUF
46 J4=LX+2

J Y= 0
On 19 JT=2,LYP

00 20 JS=2,LX
JI J4
J4 =J4+ I
JS=J4* I
JY=JY, I
YXXIJY)=.5*(TC(J4)+IJS-.5I*TCIj5I-(JS-3.5)*TCIJ3)-TX(J5)+TX(J3I)*D

I XZ*IT(JS)-2.*TCI j41+TC(J3)I
20 CONTINUE

J4xJ4+2

19CONTINUE 3



JY=0
DO 24 JT=1,Ly
DP 23 JS=1,LXM
DP 22 jQ=ILY
JTQLXm*IJABS( JT-JU)4A
nn 21 jP=1IXM
jl=J rQ+I ABS (JS-JP I
JY= JY4 I
Y( JY =YKx( JI

21 COiT I NUF
2? CCNTINJE

JY =JY+ NY
23 CONTINUE

24 CONTINUE
IF(LY4.EQ.0) RETURN
J4=2*XP.
JY= 0
PDO 25 JT=3, LYP

r DC 26 jS=29L)X
Y =JY 1
J4=j4+ 1
J3 =J4-LXKP
yX(jy)=(TC(J4)tTC(J31+TC(J4+1IHTC(J

3tl)I/OXDY

2 6 C 'NT I K,(JF
'..= j14.

?5 r INT I .Li

rOn Y)l JT = I L

r~ 9JS=I, IM

J2=LXM*(IARS(JTQI-l)/2
D27 JP=1,LX

JSP=2* (JS-J P3+1
J =j2+ (I ABS (JSP)+ 13/2
I y =j y+ I

Y( JY) =Y)(X( JI
IF (JTO*JSP.L.T.01 Y(jyI -Yf jyl

27 CONTINUE

28 CONTINUE
JY= JY+NX

29 CONTINUE
30 CONTINUF

.1 JY=O
J4=L XP+2
DD 31 JT=2,LY
DO 3? JS=3,LXP
J3=J4

J4=J4+ I
J5=J4+LXP
jV=JY+ I
YXX(JY3=(-TC(J4)+TC(J3)+TC(j5I-TC(J5-))/XlY

32 CONTINUF
J4=J4+2

31 CONTINUE
JY=N*NX
DO 36 JT=1,LYM
DO 35 JS=I,LX
00 34 JQ=1,LY
JTQ=2* gJT-JOI 41

38



J2=LXM*( IABS(JTQ)-I)/2
DO 33 JP=1,LXM
JY=JY*
JSP=2* (JS-J P)-I
jl=j2+(IA8S(JSP)+I1/2
Y( JY) =YXX(JIl)
IF(JTQ*JSP.LT.0) Y(JY)=-YLJYl

33 CONTINUE
34 CONTINUE

JY=JY+NY
35 CONTINUE
36 CONTINUE

Jy=O
J4=LX+2
DO 37 JT=2,LY
DO 38 JS=2,LXP
Jy=JY+1
J4=J4+ I
J5=J4+LXP
J3=J4-LXP
YXX(JY)=.5*(TC(J4)+(JT-~.5*TC(J5)(JT-3.5))*TC(J3)-TYfJ5)tTY(J

3 ))+D

1Y2*(TC (J5)-2.*TC( J4)4-TC(J3))
38 CONTINUE

J4=J4+ I
37 CONTINUE

JY= (N I) *NX
DO 42 JT=1,LYM
DO 41 JS=ILX
DO 40 JQ=19LVM
JTQ=LX*I ABS(JT-JQ 1+1
DO 39 JP=1,LX
jl=JTQ+IABS(JS-JP I
JV=JY+ I
Y( JY I=YXX( J 1

39 CONTINUE
40 CONTINUE

JY=JY+NX
41 CONTINUE
42 CONTINUE

RETURN
END
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III. DESCRIPTION OF THE SUBROUTINE PLANE

The subroutine PLANE(TH, LX, LY, DX, DY, P) uses input variables
1

TH, LX, LY, DX, and DY to store times the plane wave measurements
--- 2AxAy

(59) to (66) in P(i), P(N x + i), P(N + i), P(N + Nx + i), P(2N + i),

P(2N + N + i), P(3N + i), and P(3N + N + i) respectively where
x x

i = p + (q-l)(L - 1) in (59) and (65)X

i = p + (q-l) 1 In (62) and (64)

N = (Lx - 1) L

N = Nx + L x(Ly - 1)

Both angles P and d appearing in (59) to (66) are equal to TH radians.

The arguments LX and LY of PLANE are the numbers L and L of subdivisionsxC y

in the x and y directions and DX and DY are the electrical lengths kAx and

kAy of the x and y subdivisions. We require that LX > 2, and LY > 1.

1
Nested DO loops 81 and 87 store - times (59) with

2AxAy

p = JP

q = JQ
1

in P(p + (q-l)(L - 1)). Nested DO loops 82 and 88 store 2 times (62)

with

p = JP

q = J0

in P(N + N + p + (q-l)1 ). Nested DO loops 83 and 84 store 1 times (64)
x x 2AxAy

with

p = JP

q = JQ

1
in P(2N + N + p + (q-l)1x). Nested DO loops 85 and 86 store 2 times (65)

with

p - Jp

q - JQ

in P(3N + p + (q-1)(L - 1)).
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C LISTING OF THE SURRDUTINF PLANE

C
SUPtROUTINE Pt ANF(TH,LX.LY~l)X.DyvP)
COMPLEX UUlvP(200)

LXM=L X-1
LYM=L V-1
NX=LXM*.Y

N=NX+LVM*LX
N4=N*4
00 89 J=19N4
P(J)=O.

SN=SIN( TH)
CS=CO"S(TH)
X2=DX*CS
X3=.* *X2
Sl=-SIN(X3) /X3
S2=S1* SI*SN
DO 81 JP=1,LXM
S5=JP*X2
UI=SZ*(COS(s5)+u*SIN(S5))
JI =JP
DO 87 JQ=I,Ly
P1 JI)=UI
J I = J1 +L X M

87 CONTINUE
81 CONTINUF

IF(LYM.EO.OI1 GO TO 90
M)O 8? JP=1,Lx
S5=(JP-.5)*X2
U1=Sl*(COS(S5)+U*SIN(S5))

jl=N+NX+JP
on 88 JO=l,LYM
P1 J ) =Ul
JI =JI+LX

88 CONTINUE
82 CONTINUE
90 Y2=DV*CS

Y3=.*Y
Si=-SEN(y3J /Y3
S2=SL*Sl*SN
jl=?*N+NX
IF(LYM.EQ.

0 1 Go To 91

DO 83 JQ-1,LYM
S5=JQ* Y2, IN2

no 94 JP=1,LX
ji=Jltl

84 CONTINUE
83 CONTINUE
91 DO 85 JQ=ILy

S5=( J-.S)*Y2
ul=Sl*(COS(S51+O*S[N(S5)1
D': 86 JP=I,LX(M
JI=J 141

86 CnNTINUE 
RETURN

85 CONT INUF END
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IV. DESCRIPTION OF THE PROGRAM TO PLOT PATTERNS

This program plots patterns of the transmission cross section per

square wavelength T/X2 read from direct access data set 6.

Punched card data is read according to

READ(I,22) NTH, NP

22 FORMAT(2013)

READ(I,22)(LP(K), K = 1, NP)

READ(1,10)(SCL(K), K = 1, NP)

10 FORMAT(6Ei1.4)

The patterns of T/b2 are read frcm direct access data set 6 according to

REWIND 6

Jl = NTU*NP

READ(6)(TA(I), I = 1, J1)

2TA(J + (K-1)*NTH) is the value of T/
2 at angle (J-1)*iT/(NTH-1) radians

on the Kth pattern. Here, J = 1,2,...NTH and K = 1,2...NP. If LP(K) = 0,

the Kth pattern is not plotted. If LP(K) j 0, the Kth pattern is multi-

plied by SCL(K) and then plotted in inches.

Minimum allocations are given by

DIMENSION LP(NP), SCL(NP), SN(NTH), CS(NTH),

TA(NP*NTH), X(NTH), Y(NTH)

DO loop 15 plots the Kth pattern if LP(K) 0 0. DO loop 16 puts

tick marks on the vertical axis drawn by statement 25. DO loop 18 puts

tick marks on the horizontal axis drawn by statement 26. Statement 27

plots the pattern whose horizontal and vertical coordinates have been

stored in X and Y by DO loop 20.
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C LISTING OF THE PROGRM TO PLOT PATTERNS
C
IFXEC FORTGCLG

f/FnRT.SVS!N 00
DIMENSiON LP(25) ,SCL(251 ,XX(4),YY(4)vSN(73),CS(73),TA(1168)
DTMENSION X(731,Y(731
RFAD(1,??) NTH,NP

22 F,'PMAT12OT3)
WPITF(3, 11) NTH,K-P

11 PRMATP NTH NPI/1XP213)
QFAD( l,22 ( LP(KI ,K=LNP I
WPITF(3,23)(tPfKI,K=1,NP)

23 FDPMAT(l LP'/(IX92013))
RE AD(I1,10) S(L (K) ,K= 1, NP)

10 FORMAT(6El1.4)
WRITE 13, 24) 1SCL(K ),K=1,NP)

24 FORMATI' SCL'f(IX,6Elt.41)
XXIII=l

YY(2) =9.
XX (3 =1.
YY(3) =5.
XX(4)=5.
vYY(4) =5.
P1 3. 141593

19 C3NTINUE
CALL PLOTID
REWIND 6

12 J1=NTH*NP
READ 16)(TA(1),I1j,jI)
WPITE(3p14) TO,(l)

14 FORMAT0( TA= ,ElI.4)

00 15 K=1,NP
IF(LP(KI.EQ.OJ GO TO 21

25 CALL LINF(XX(1),VY(1),21.l.O)
S3=9.
DO 16 J=1,9

17 CALL SYMBOLI 1.,S3,.14,13,90.,-tl
S3=S3-1.

16 CONTINUE
26 CALL LINE(XXI3),YV(3),2,1,O,OI

4 S1=5.
DO 18 J=1,4
CALL SYMBOL(SlI,5.,.14,13,O.,-1I
SI=S1-1.

18 CONTINUE
DO) 20 J=1,NTH
J2=J I+j
S =T Al j2 )*SCL(IK)
XI Jlm 1.,51*SN( it
V(I i=5.+SI*CS(Jl

20 CONTINUE
?7 CALL LJNF(X(I1)YIl~vNTH,1,0,O)
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CALL PLOT(6.,O.,-3)

21 j1=jl+NTH
15i CrONTINOE

CALL PLOT15.,O.,-3)
STnp
FND

//G,!.F06F O D rJSNA'4F EE0034.REVI,1SP=OLD,UNIT=
3 3 3 0 9

/1 DCB=IRECFM=VS ,8LKS17F=2596,LRECL=25
9 2)

//C,f.SySJN DD

0.1000OF+04
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